

PHYTOCHEMISTRY

Phytochemistry 63 (2003) 449-452

www.elsevier.com/locate/phytochem

Flavone C-glycosides from Lupinus hartwegii

Mohamed S. Kamel*

Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

Received 24 October 2002; received in revised form 19 January 2003

Abstract

From the aerial parts of *Lupinus hartwegii*, two new flavone C-glycosides apigenin-7-*O*-β-apiofuranosyl-6, 8-di-*C*-β-glucopyranoside (1) and apigenin-7-*O*-β-apiofuranosyl-6-*C*-β-glucopyranosyl-8-*C*-(6""-*O*-*E*-feruloyl)- β-glucopyranoside (2) have been isolated together with two known isoflavonoid glucosides genistein-7-*O*-β-glucopyranoside (3) and genistein-7, 4'-di-*O*-β-glucopyranoside (4) as well as two known compounds ferulic acid 4-*O*-β-glucopyranoside (5) and sparteine (6). The structures of the isolated compounds were verified by means of MS and NMR spectral analyses.

© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Lupinus hartwegii; Leguminosae; Flavone C-glycosides; Isoflavonoid glucosides

1. Introduction

Lupinus hartwegii Lindl (L. maxicanus) is a cultivated plant in Egypt and known as Termis Al-zuhoor. Fifteen alkaloids were detected in the different organs of the plant by capillary GC and GC–MS techniques (El-Shazly et al., 2001). Moreover, two triterpenes (dimethyl serratagenate and acetyl dimethyl serratagenate) together with three coumaranochromones (lupinalbins A, C and E) and three common isoflavones (genistein, luteone and 2'-hydroxy genistein) have been already detected in the aerial parts of L. hartwegii (Hassanean, 1998). This work describes the isolation and structural elucidation of two new flavone C-glycosides together with two known isoflavonoid glucosides, one known phenolic glucoside and one known alkaloid from the aerial parts of L. hartwegii.

2. Results and discussion

The ethanolic extract of the aerial parts of *L. hart-wegii* was defatted with diethylether and the aqueous layer was subjected to column chromatography on Diaion HP-20. The methanol–H₂O (1:1) and methanol eluates were repeatedly chromatographed on columns

* Tel.: +20-88-333196; fax: +20-88-332776. *E-mail address:* mkamel@mailcity.com (M.S. Kamel).

of silica gel and then by MPLC and HPLC to afford four compounds (1–4) from the 50% methanol eluate and two compounds (5, 6) from the methanol eluate.

The molecular formula of compound 1 was deduced as $C_{32}H_{38}O_{19}$ from HR FAB-MS spectrometry (see experimental section). Inspection of the ¹³C NMR (Table 1) and DEPT spectra of 1 displayed the presence of apigenin as aglycone together with three sugar residues. The identity of apigenin was verified from the two signals at $\delta_{\rm C}$ 129.0 and 115.9 (each one for two methine carbons) revealing the A_2B_2 system of ring-B of the aglycone (C-2', 6' and C-3', 5' respectively) and the methine carbon signal at $\delta_{\rm C}$ 102.5 was assigned to C-3

Table 1 13 C NMR spectral data of compounds 1 (DMSO) and 2 (CD₃OD) (100 MHz)

C	1	2	C	1	2
2	164.1	166.6	Glc		
3	102.5	103.7	1"",1""	74.7, 74.0	76.9, 76.1
4	182.3	184.1	2"",2"""	72.2, 71.6	74.0, 73.4
5	158.6	160.3	3"",3"""	78.9, 78.9	79.8, 79.1
6	107.2	107.6	4"',4""	70.6, 69.0	72.2, 71.1
7	161.2	162.0	5"',5""	81.8, 80.9	82.7, 80.7
8	104.8	106.0	6"",6""	61.1, 59.7	62.9, 64.0
9	155.5	157.8			
10	103.7	105.4	Fer		
1'	121.6	123.4	1'''''		127.6
2′	129.0	130.0	2''''		111.4
3′	115.9	117.0	3''''		150.5
4′	160.4	162.5	4''''		149.2
5′	115.9	117.0	5''''		116.5
6′	129.0	130.0	6''''		124.5
Api			7''''		114.8
1"	109.3	110.9	8''''		147.4
2"	77.8	78.3	9''''		168.9
3"	79.1	80.7	Ome		56.5
4"	72.9	74.3			
5"	64.0	65.2			

Api: β-apiofuranose, Glc: β-glucopyranose, Fer: feruloyl.

(Markham and Chari, 1982). This identity was supported by the 1 H NMR spectrum of **1** (Table 2) that showed two *ortho*-coupled doublet signals at $\delta_{\rm H}$ 8.2 and 6.8 (each 2H, d, J=8.8 Hz) assignable to H-2′, 6′ and H-3′, 5′ respectively together with a singlet at $\delta_{\rm H}$ 6.7 for H-3. The absence of the two meta coupled protons of H-6 and H-8 in the 1 H NMR spectrum of **1** together with the downfield shifts of their carbon signals in the 13 C NMR spectrum to $\delta_{\rm C}$ 107.2 and 104.8 respectively indicated the glycosylation of the aglycone at these positions (Agrawal, 1989). On the other hand, the three sugar residues have been identified as β -apiofuranose and two β -glucopyranose units from the 13 C NMR spectrum (Table 1) (Bradbury and Jenkins, 1984;

Table 2 ¹H NMR spectral data of compounds **1** (DMSO) and **2** (CD₃OD) (400 MHz)

Н	1	2
3	6.7, <i>s</i>	7.1, <i>s</i>
2',6'	8.2, d (8.8)	7.8, d (8.5)
3',5'	6.8, d(8.8)	6.8, d(8.5)
Api-1"	5.2, d (4.4)	5.2, d (4.1)
Glc-1"', 1""	4.6, d (9.5), 4.1, d (9)	5.0, d (9.5), 4.9, d (10)
C-5 OH	13.7, <i>s</i>	. , , , ,
Fer-2''''		6.7, d(2)
Fer-5""		6.5, d(8.1)
Fer-6""		7.0, dd (2, 8.1)
Fer-7""		6.3, d (15.9)
Fer-8""		7.6, d (15.9)
Ome		3.7, <i>s</i>

Chemical shifts in ppm, J values in parentheses in Hz.

Markham et al., 1982). The upfield shifts of the anomeric carbon signals of the glucosyl residues ($\delta_{\rm C}$ 74.7, 74.0) indicates that these glucosyl units are C-linked to C-6 and C-8 of the aglycone (Agrawal, 1989). The attachment of the apiosyl unit to the hydroxyl group at C-7 was established from the chemical shift of C-4 of the aglycone at $\delta_{\rm C}$ 182.3. If this glycosylation had occurred at the 5-hydroxyl group, the hydrogen bonding between the 5-hydroxyl and the carbonyl would be broken leading to a significant upfield shift of C-4 and downfield shift of C-3 (Markham et al., 1978). From the ¹H NMR spectral data of 1 (Table 2), the coupling constant of the doublet at $\delta_{\rm H}$ 5.2 (J = 4.4 Hz) representing the anomeric proton of the apiofuranosyl unit, and the two doublets at $\delta_{\rm H}$ 4.6 (J=9.5 Hz) and 4.1 (J=9.0 Hz) of the two glucopyranosyl units, proved their β -configuration. The negative ion FAB-MS spectrum of 1 exhibited M⁺ at m/z 725 [M-H]⁻ as well as a significant peak at m/z 593 [M-H-apiose]-. Consequently, the structure of compound 1 was determined as apigenin-7-O-β-apiofuranosyl-6, 8-di-C-β-glucopyranoside.

The molecular formula of compound 2 was deduced as C₄₂H₄₆O₂₂ from HR FAB-MS spectrometry (see Experimental section). ¹³C, ¹H NMR (Tables 1 and 2 respectively) and DEPT experiments of 2 revealed a similar pattern as those of 1. However, 10 additional signals were present in the spectrum of 2 (see Table 1) and these are typical for a feruloyl moiety (Kamel et al., 2001). The identity of the feruloyl moiety was substantiated from the ¹H NMR spectrum of **2** (Table 2). The two doublets at δ_H 6.7 (J = 2.0 Hz) and 6.5 (J = 8.1Hz) were assigned to H-2"" and H-5"" of the feruloyl moiety respectively while the doublet doublet at δ 7.0 (J=2.0, 8.1 Hz) represented H-6"". Moreover the coupling constant (15.9 Hz) of the two doublets at δ_H 7.6 and 6.3 (H-8"" and 7"" respectively) indicated the trans configuration of the feruloyl moiety (Silverstein et al., 1996). The downfield resonance ($\delta_{\rm C}$ 64.0, Table 1) for one C-6 of the two glucosyl units (C-6" or C-6"") indicated its substitution with this feruloyl moiety (Miyase et al., 1992). Because of the similarity of the chemical shifts of the two glucosyl units attached to C-6 and C-8 of the aglycone and due to the difficulty in determining which one is substituted with the feruloyl moiety at its C-6, 2D NMR experiments were performed. The HMQC spectral analysis of 2 revealed correlations between each carbon and its directly attached protons while the proton-proton couplings were established by measurements of H–H COSY. The HMBC spectral analysis (Fig. 1) revealed correlation peaks between H-1 of a glucopyranosyl unit ($\delta_{\rm H}$ 4.9, H-1"") with C-8 of the aglycone ($\delta_{\rm C}$ 106.0), H-1 of the second glucosyl unit (δ_H 5.0, H-1") and C-6 of the aglycone ($\delta_{\rm C}$ 107.6) and H-1" of the apiofuranosyl residue (δ_H 5.2) and C-7 (δ_C 162.0) of apigenin. Additionally, the 2D NOESY spectrum of 2 revealed a correlation peak between H-1"" of the glucopyranosyl

Fig. 1. Significant HMBC (\rightarrow) and NOE (\leftrightarrow) correlations of compound 2.

unit at C-8 (δ_H 4.9) and H-3"" of the same residue (δ_H 4.8, dd, J = 6.2 and 7.3 Hz). H-3"" also showed a NOESY correlation peak with H-7"" (δ_H 6.3) of the feruloyl moiety. Therefore, it is concluded that the feruloyl moiety is attached to C-6"" of the glucopyranosyl unit at C-8 of the aglycone that was confirmed from the correlation peak between H-8"" ($\delta_{\rm H}$ 7.6) of the feruloyl moiety and C-6"" ($\delta_{\rm C}$ 64.0) of this glucosyl unit in the HMBC spectrum. The β configuration of the anomeric protons of the sugar residues was deduced from the ¹H NMR spectrum of 2 which showed three doublets at $\delta_{\rm H}$ 5.2 (J = 4.1 Hz), 5.0 (J = 9.5 Hz) and 4.9 (J = 10.0 Hz) for β -apiofuranosyl and two β -glucopyranosyl units respectively. The negative ion FAB-MS spectrum of 2 exhibited M⁺ at m/z 901 [M-H]⁻ as well as a significant peak at m/z 769 [M-H-apiose]. Consequently, the structure of compound 2 was determined as apigenin-7-O-β-apiofuranosyl-6-C-β-glucopyranosyl-8-C-(6''''-O-E-feruloyl)- β -glucopyranoside.

After determination of the structures of compounds 3–6 by ¹H and ¹³C NMR analyses, their structures were found to be known as follows: genistein-7-*O*-β-glucopyranoside (3), genistein-7, 4'-di-*O*-β-glucopyranoside (4) (Yasufumi et al., 2000; Agrawal, 1989), ferulic acid 4-*O*-β-glucopyranoside (5) (Baderschneider and Winterhalter, 2001) and sparteine (6) (Boczon and Skolik, 1989; Mohamed, 1991).

3. Experimental

¹H and ¹³C NMR (TMS as int. standard): 400 MHz and 100 MHz respectively were recorded on a Jeol JNM α-400 spectrometer. MS spectra were recorded on a Jeol JMS-SX 102 spectrometer by direct inlet method at an ionizing voltage of 70 eV. MPLC: RP-18 column (20 mm i.d.×40 cm); flow rate of mobile phase 3 ml/min. HPLC: polyamine column (20 mm i.d.×25 cm, YMC) with a Toyo Soda high speed chromatograph HLC-803 D pump and a Tosoh refraction index (RI-8) detector; flow rate of mobile phase 6 ml/min, injection vol. 0.8–1.0 ml. CC: Kieselgel 60 (70–230 mesh, Merck) and

Diaion HP 20 (Mitsubishi). TLC: silica gel 60 precoated plates, F-254 and HPTLC using RP-18 precoated plates, F-254 s (Merck).

3.1. Plant material

Aerial parts of *L. hartwegii* Lindl were collected from the Experimental Station of Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt in March 1996. The plant was identified by Professor A. Fayed, Department of Botany, Faculty of Science, Assiut University, Assiut, Egypt. A voucher specimen is deposited at the Herbarium of Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt.

3.2. Extraction and isolation of compounds (1–6)

The air dried powdered aerial parts of L. hartwegii (1.5 kg) were extracted with EtOH-H₂O (7:3). The dried ethanolic extract (130 g) was suspended in H₂O and defatted with diethylether. The ag. fr. was applied to a column of Diaion HP-20 and eluted with H₂O, MeOH-H₂O (1:1), MeOH and acetone successively. The MeOH-H₂O (1:1) eluate (25 g) was chromatographed on silica gel CC using EtOAc-MeOH-H₂O (85:15:1 and 75:25:2) to give five fractions. Fraction 4 eluted with EtOAc-MeOH-H₂O (75:25:2) was subjected to MPLC on ODS column and MeOH-H₂O (5.5:4.5) as a solvent system followed by HPLC using polyamine column and MeCN-H₂O (93:7) to afford compounds 1 (yellow powder, 80 mg), 2 (yellow powder, 25 mg), 3 (yellow powder, 200 mg) and 4 (yellow powder, 55 mg). The MeOH eluate (10 g) was chromatographed on silica gel CC using CH₂Cl₂-MeOH-H₂O (80:20:1) to afford 3 fractions. Fraction 2 was subjected to HPLC on polyamine column using MeCN-H₂O (95:5) as a solvent system to give compounds 5 (white powder, 30 mg) and 6 (white powder, 12 mg).

3.3. Compound (*1*)

Apigenin-7-*O*-β-apiofuranosyl-6, 8-di-*C*-β-glucopyranoside. R_t 18 min (polyamine, MeCN–H₂O, 93 : 7). UV $\lambda_{\rm max}$ MeOH nm: 274, 328. HR FAB-MS (negative) m/z: 725.6291 [M–H]⁻ C₃₂H₃₇O₁₉ (req. 725.6250). ¹³C NMR (DMSO, Table 1). ¹H NMR (DMSO, Table 2).

3.4. Compound (2)

Apigenin-7-*O*-β-apiofuranosyl-6-*C*-β-glucopyranosyl-8-*C*-(6''''-*O*-*E*-feruloyl)- β-glucopyranoside. R_t 23 min (polyamine, MeCN- H₂O, 93:7). UV $\lambda_{\rm max}$ MeOH nm: 272, 325 and 291 (sh). HR FAB-MS (negative) m/z: 901.7873 [M-H]⁻ C₄₂H₄₅O₂₂ (req. 901.7930). ¹³C NMR (CD₃OD, Table 1). ¹H NMR (CD₃OD, Table 2).

Acknowledgements

The author is grateful to the Research Center of Molecular Medicine, Hiroshima University, Faculty of Medicine, Japan, for spectral measurements of this work.

References

- Agrawal, P., 1989. Carbon-13 NMR of Flavonoids. Elsevier Science, New York.
- Baderschneider, B., Winterhalter, P., 2001. Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from riesling wine and screening for antioxidant activity. J. Agric. Food Chem. 49 (6), 2788–2798.
- Boczon, W., Skolik, J., 1989. Further studies on the stereochemistry of sparteine, its isomers and derivatives. XXI. Carbon 13-NMR analysis of sparteine derivatives substituted in external rings—free bases. Bull. Pol. Acad. Sci. Chem. 37 (1–2), 35–44.
- Bradbury, H., Jenkins, J., 1984. Determination of the structures of trisaccharides by ¹³C-N.M.R. spectroscopy. Carbohydr. Res. 126, 125–156.

- El-Shazly, A., Ateya, A., Wink, M., 2001. Quinolizidine alkaloid profiles of *Lupinus varius* orientalis, *L. albus* albus, *L. hartwegii* and *L. densiflorus*. Z. Naturforsch. 56c, 21–30.
- Hassanean, H., 1998. Two new triterpenes and other constituents from Lupinus varius and Lupinus hartwegii. Bull. Pharm. Sci., Assiut University 21 (2), 109–115.
- Kamel, M., Mohamed, K., Hassanean, H., Ohtani, K., Kasai, R., Yamasaki, K., 2001. Acylated flavonoid glycosides from *Bassia muricata*. Phytochemistry 57, 1259–1262.
- Markham, K., Chari, V., 1982. The Flavonoids: Advances in Research. Chapman and Hall, London, New York.
- Markham, K., Ternai, B., Stanley, R., Geiger, H., Mabry, T., 1978. Carbon-13 NMR studies of flavonoids—II. Tetrahedron 34, 1389–1397.
- Miyase, T., Iwata, Y., Ueno, A., 1992. Tenuifolioses G-P, oligo-saccharide multi-esters from the roots of *Polygala tenuifolia* Willd. Chemical Pharmaceutical Bulletin 40, 2741–2748.
- Mohamed, M. H., 1991. Phytochemical Studies on Lupin Alkaloids in some Egyptian Plants (*Lupinus termis* Forsk). PhD Thesis, Al-Azhar Univ., Cairo, Egypt.
- Silverstein, R., Webster, F., 1996. Spectrometric Identification of Organic Compounds, sixth ed. John Wiley and Sons, New York. p. 212.
- Yasufumi, K., Ragai, I., Satoshi, T., 2000. HPLC analysis of white lupin isoflavonoids. Biosci. Biotechnol. Biochem. 64 (6), 1118–1125.